Optimised Hydrogen Production by Aqueous Phase Reforming of Glycerol on Pt/Al2O3

نویسندگان

  • Nachal D. Subramanian
  • June Callison
  • C. Richard A. Catlow
  • Peter P. Wells
  • Nikolaos Dimitratos
چکیده

Aqueous phase reforming of glycerol was studied over a series of γ-Al2O3 supported metal nanoparticle catalysts for hydrogen production in a batch reactor. Of the metals studied, Pt/Al2O3 was found to be the most active catalyst under the conditions tested. A further systematic study on the impact of reaction parameters, including stirring speed, pressure, temperature, and substrate/metal molar ratio, was conducted and the optimum conditions for hydrogen production (and kinetic regime) were determined as 240 °C, 42 bar, 1000 rpm, and substrate/metal molar ratio ≥ 4100 for a 10 wt% glycerol feed. The glycerol conversion and hydrogen yield achieved at these conditions were 18% and 17%, respectively, with negligible CO and CH4 formation. Analysis of the spent catalyst using FTIR provides an indication that the reaction pathway includes glycerol dehydrogenation and dehydration steps in the liquid phase in addition to typical reforming and water gas shift reactions in the gas phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on the Platinum-Loaded NaY Zeolite Catalysts for Liquid Phase Reforming of Carbohydrates to Hydrogen

Hydrogen production from biomass has been paid more attention for years. Processes suggested for production of hydrogen from biomass are often involved in high-temperature pyrolysis, catalytic steam reforming or enzymatic biosynthesis. These strategies, however, encounter problems of high consumption of energy, low catalyst efficiency and very limited productivity. Group VIII metals such as Pt,...

متن کامل

Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts.

Glycerol is the main byproduct of biodiesel production and its increased production volume derives from the increasing demand for biofuels. The conversion of glycerol to hydrogen-rich mixtures presents an attractive route towards sustainable biodiesel production. Here we explored the use of Pt/Al(2)O(3)-based catalysts for the catalytic steam reforming of glycerol, evidencing the influence of L...

متن کامل

Hydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study

Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...

متن کامل

Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor

Glycerol hydrodeoxygenation to 1,2-propanediol (1,2-PDO) is a reaction of high interest. However, the need for hydrogen supply is a main drawback of the process. According to the concept investigated here, 1,2-propanediol is efficiently formed using bio-glycerol feedstock with H2 formed in situ via ethanol aqueous phase reforming. Ethanol is thought to be a promising H2 source, as it is alcohol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016